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Deep neural networks have achieved state-of-the-art accuracy at
classifying molecules with respect to whether they bind to specific
protein targets. A key breakthrough would occur if these mod-
els could reveal the fragment pharmacophores that are causally
involved in binding. Extracting chemical details of binding from
the networks could enable scientific discoveries about the mech-
anisms of drug actions. However, doing so requires shining light
into the black box that is the trained neural network model, a
task that has proved difficult across many domains. Here we show
how the binding mechanism learned by deep neural network
models can be interrogated, using a recently described attribu-
tion method. We first work with carefully constructed synthetic
datasets, in which the molecular features responsible for “bind-
ing” are fully known. We find that networks that achieve perfect
accuracy on held-out test datasets still learn spurious correlations,
and we are able to exploit this nonrobustness to construct adver-
sarial examples that fool the model. This makes these models
unreliable for accurately revealing information about the mech-
anisms of protein–ligand binding. In light of our findings, we
prescribe a test that checks whether a hypothesized mechanism
can be learned. If the test fails, it indicates that the model must be
simplified or regularized and/or that the training dataset requires
augmentation.
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A major stumbling block to modern drug discovery is to dis-
cover small molecules that bind selectively to a given protein

target, while avoiding off-target interactions that are detrimental
or toxic. The size of the small-molecule search space is enor-
mous, making it impossible to sort through all of the possibilities,
either experimentally or computationally (1). The promise of in
silico screening is tantalizing, as it would allow compounds to be
screened at greatly reduced cost (2). However, despite decades of
computational effort to develop high-resolution simulations and
other approaches, we are still not able to rely solely upon virtual
screening to explore the vast space of possible protein–ligand
binding interactions (3).

The development of high-throughput methods for empirically
screening large libraries of small molecules against proteins has
opened up an approach where machine learning methods corre-
late the binding activity of small molecules with their molecular
structure (4). Among machine learning approaches, neural net-
works have demonstrated consistent gains relative to baseline
models such as random forest and logistic regression (5–9).
In addition to protein–ligand binding, such models have been
trained to predict physical properties that are calculated using
density functional theory, such as polarizability and electron den-
sity (10–12). The ultimate promise of data-driven methods is to
guide molecular design: Models learned from ligands that bind
to particular proteins will elucidate the mechanism and generate
hypotheses of ligands that bind the required target in addi-
tion to providing improved understanding of the noncovalent
interactions responsible.

The motivating question for this work is: Why do vir-
tual screening models make the predictions they do? Despite
their high accuracy, the major weakness of such data-driven
approaches is the lack of causal understanding. While the
model might correctly predict that a given molecule binds to
a particular protein, it typically gives no indication of which
molecular features were used to make this decision. Without
this, it is not clear whether the model learns the mechanism
of binding or spurious molecular features that correlate with
binding in the dataset being studied (13–15). Such model weak-
nesses are not captured by traditional evaluations that measure
model accuracy on held-out test sets, because these held-out
sets suffer from experimental selection bias and do not con-
tain random samples drawn at uniform from the space of
all molecules.

The key issue is to assess whether state-of-the-art neural net-
work models trained on protein–ligand binding data learn the
correct binding mechanisms, despite the presence of dataset bias.
To unravel this, we define a synthetic “binding logic” as a combi-
nation of molecular fragments that must be present (or absent)
for binding to occur, e.g., “naphthalene and no primary amine.”
We construct 16 binding logics and use each to label molecules
from the Zinc12 database (16). We randomly split the dataset
for each logic into test and train splits, and train models. Model
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attribution is used to assess whether each trained model has
learned the correct binding logic.

To measure model performance on held-out sets, we report
the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve (17), and refer to this as the Model
AUC. We then use a recently developed attribution method
(18) to verify whether each model learns its corresponding bind-
ing logic correctly. The method assigns an attribution score
to each atom that reports how important the atom is to the
model’s ultimate prediction. We develop a metric called the
Attribution AUC that measures how well the per-atom attribu-
tion scores reflect the ground truth binding logic. The atoms
within each molecule are ranked by their attribution scores,
and these rankings are compared with the ground truth binary
label for each atom indicating whether that atom is part of the
binding logic.

The synthetic labels perfectly obey each binding logic, remov-
ing issues of experimental noise, so it is perhaps not surprising
that neural network models obtain Model AUC of ∼ 1.0 in
all cases on held-out sets filtered from Zinc. Nonetheless, the
Attribution AUC is often much lower than 1.0, likely due to
biases in the original dataset. Zinc12 does not contain all pos-
sible molecules, so there are molecular fragments that correlate
with the binding logic but are not themselves involved in binding.
This dataset bias implies that there exist “adversarial molecules”
that do not satisfy the defined binding logic, for which the model
makes incorrect predictions. Indeed, examining the model attri-
butions allows us to identify adversarial molecules. Hence, even
in this controlled setting, the network fails to learn the binding
logic. Real-world protein-binding tasks are even more complex,
due to noise in the binding assay, as well as underlying binding
logics that are potentially more complex.

To illustrate the practical utility of this approach, we apply
this framework to ligands from the Database of Useful Decoys:
Enhanced dataset (19) that bind ADRB2. We create a hypothe-

sized logic for the binding mechanism, and create synthetic labels
for the DUD-E dataset based on this logic. Although a graph
convolution (GC) neural network makes perfect predictions on
a held-out dataset, biases in the dataset lead us to discover
molecules which the model predicts bind to ADRB2, despite
not satisfying the logic. The pattern used by the model to decide
binding is different from the logic we imposed. Thus, despite its
seemingly perfect performance, the model is fundamentally not
able to predict that molecules bind for the right reason.

Analysis Framework
To generate data with ground truth knowledge of the binding
mechanism, we construct 16 synthetic binary label sets in which
binding is defined to correspond to the presence and/or absence
of particular logical combinations of molecular fragments. For
example, ligands could be labeled positive (i.e., bind to the target
protein) if they obey the binding logic “carbonyl and no phenyl.”
Each binding logic is used to filter the Zinc database of molecules
to yield sets of positive and negative labeled molecules. In
our implementation, we specify molecular fragments using the
Smiles Arbitrary Target Specification format (20), and we use
RDKit (21) to match them against candidate molecules, with a
custom implementation of the logical operators and, or, and not.
The 16 logics used in this paper are made up of elements sam-
pled from 10 functional groups (SI Appendix, Table S1), with up
to four elements per logic joined by randomly selected operators
(Table 1 and SI Appendix, Table S2).

Dataset bias in chemistry is a well-known issue that has previ-
ously been described (13). Essentially, molecules that have been
used in protein–ligand binding assays are not drawn uniformly
at random from chemical space, but, instead, their selection for
inclusion in a binding assay reflects the knowledge of expert
chemists. These biases mean that large neural network mod-
els are at risk for overfitting to the training data. To reduce
this risk, we carefully construct each dataset to be balanced,

Table 1. Attribution AUC and Model AUCs for two held-out sets for GC networks and MPNNs trained against synthetic data labels
generated according to the binding logics listed in column 1

See SI Appendix for more details on the binding logics and their component molecular fragments.
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by sampling equally from all combinations of negations of the
functional groups that make up each logic. In the case of just
one functional group (A), this means that dataset contains equal
numbers of molecules that match “A” and “∼A.” When there
are two functional groups, say A and B, we have equal num-
bers matching “A&B,” “A&∼B,” “∼A&B,” and “∼A&∼B.”
Similarly, all combinations are considered for logics with three
and four functional groups. Each negation combination is rep-
resented by 1,200 molecules in the dataset, with ∼10% of each
reserved for held-out model evaluation.

Model Training. We use two models: the molecular GC model
from Kearnes et al. (22) and the message passing neural
network (MPNN) from Gilmer et al. (10). Both featurize
each molecule using atoms and pairs of atoms. We use the
same hyperparameters reported, with the exception of a mini-
batch size of 99 and training each to 10,000 steps, taking
∼ 1 h on one graphics processing unit for each dataset. The
model returns a binding probability for each molecule in the
held-out test set, which is used to rank the molecules. Each
molecule has a binary label indicating whether it binds. The ROC
curve is generated by plotting the true positive rate against the
false positive rate for ranking score thresholds in [0, 1]. The
AUC is the area under the ROC curve: 1.0 is a perfect classifier
with 100% true positives and 0% false positives, while a random
classifier would receive 0.5.

Attribution Technique: Integrated Gradients. We next seek to
determine whether these models have learned the binding logic
used to generate the synthetic labels. Given a trained model and
an input, an attribution method assigns scores to each input fea-
ture that reflect the contribution of that feature to the model
prediction. Inspecting or visualizing the attribution scores reveals
what features, in our case atoms and atom pairs, were most
relevant to the model’s decision (Fig. 1). Formally, suppose a
function F :Rn→ [0, 1] represents a deep network.

Definition 1: The attribution at input x =(x1, . . . , xn)∈Rn is a
vector AF (x )= (a1, . . . , an)∈Rn where ai is the contribution of
xi to the prediction F (x ).

In our case, the input x is a molecule featurized into atoms
and atom pairs, and F (x ) denotes the probability of binding to
a protein target. To compute attributions to individual molec-
ular features, we use the Integrated Gradients method (18).
This method is justified by an axiomatic result showing that
it is essentially the unique method satisfying certain desirable
properties of an attribution method. Formal definitions, results,
and comparisons to alternate attribution methods are available
in ref. 18.

Fig. 1. An example of per-atom model attributions visualized for a
molecule. Each atom is colored on a scale from red to blue in proportion
to its attribution score, with red being the most positive and blue being the
most negative.

In this approach, attributions are defined relative to a baseline
input, which serves as the counterfactual in assessing the impor-
tance of each feature. Such counterfactuals are fundamental to
causal explanations (23). For attribution on images, the base-
line is typically an image made of all black pixels. Here, we use
an input where all atom and atom pair features are set to zero
(details in SI Appendix).

The Integrated Gradient is defined as the path integral of the
gradient along the linear path from the baseline x ′ to the input x .
The intuition is as follows. As we interpolate between the base-
line and the input, the prediction moves along a trajectory, from
uncertainty to certainty (the final probability). At each point on
this trajectory, the gradient of the function F with respect to the
input can be used to attribute the change in probability back
to the input variables. A path integral is used to aggregate the
gradient along this trajectory.

Definition 2: Given an input x and baseline x ′, the integrated
gradient along the ith dimension is defined as follows:

ai ::= (xi − x ′i )×
∫ 1

α=0

∂F(x ′+α×(x−x ′))
∂xi

dα, [1]

where ∂F(x)
∂xi

is the gradient of F along the ith dimension at x .
Attribution scores are assigned to both atom and atom pair

features. To simplify the analysis, we distribute the atom pair
scores evenly between the atoms present in each pair. If vi ∈AF

is the attribution for atom i , and eij ∈AF is the attribution for
atom pair i , j , then our aggregated attribution vector (indexed
over k atoms) ÃF =(ã1, . . . , ãk )∈Rk where

ãi = vi +
∑

(i,j)∈Ei

eij
2

[2]

and Ei is the set of all featurized pairs that include atom i .
Henceforth, we study these aggregated per-atom attributions for
each molecule.

Attribution AUC. Ideally, we would like the attribution scores to
isolate the synthetic binding logic used to label the dataset, since
this would translate to the ability to identify pharmacophores in
real data. Attribution scores are typically studied by visualization
using heatmaps; Fig. 1 provides a visualization of the per-atom
attribution scores for a molecule. If a model learns the correct
binding logic, we would expect the attribution scores to be larger
in magnitude for atoms involved in the binding logic and small
elsewhere.

Fig. 2 illustrates the attributions calculated for a molecule
using the model trained on logic 1, which requires a phenyl
group. A positive attribution score (red) indicates that this atom
increases “protein binding” ability, according to the trained
model, whereas a negative attribution score (blue) indicates that
the model thinks that this atom hurts binding.

Our goal is to evaluate how faithfully these scores reflect the
binding logic used to label the dataset. To that end we develop
a metric called the Attribution AUC that measures how well
the per-atom attribution scores reflect the ground truth binding
logic. We handle fragments required to be present for binding to
occur separately from those required to be absent. If a binding
logic contains fragments required to be present, we assign each
fragment atom the label 1, and all other atoms the label 0. We
then use these labels and the attribution scores to compute the
Present-Attribution-AUC. If a logic contains fragments required
to be absent, the process is analogous, except that we first multi-
ply all attribution scores by −1.0 to reverse their ranking before
calculating the Absent-Attribution-AUC. The final Attribution
AUC for the molecule is simply the average of its Present-
Attribution-AUC and its Absent-Attribution-AUC. This same
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Fig. 2. (Top) Visualization of Integrated Gradients on a “binding” molecule
for logic 1 (must contain a phenyl group). (Bottom) The top eight atoms
ranked by attribution score in descending order. This molecule would
receive an Attribution AUC of 1.0 for these attributions, because all atoms
involved the binding logic (indicated by 1 in the second column) have larger
scores than all other atoms (marked 0 in second column).

process is applied regardless of which synthetic “binding” label
the molecule carries. We report the average Attribution AUC
across all molecules in the held-out set for each dataset. The
Attribution AUC is entirely distinct from the Model AUC, which
measures model performance on held-out data.

For some molecules and binding logics, there is more than one
correct set of ground truth labels. Consider disjunctive binding
logics (that contain an “or” operator), e.g., “phenyl or alkyne or
alcohol.” The model can satisfy the binding logic by detecting
phenyl alone or alkyne alone, or alcohol alone, or any pair of
the fragments, or all three together. Each case results in differ-
ent sets of ground truth labels. A similar multiplicity of possible
ground truth labels arises when a molecule exhibits multiple
occurrences of a fragment in the binding logic (e.g., if a molecule
has two phenyl groups). Because all these label sets are correct,
we enumerate them and report the maximum Attribution AUC
found among them. Formally, for a set S of molecular frag-
ments in a disjunctive binding logic or present multiple times
in the molecule, we enumerate the set of all k combinations(
S
k

)
(1≤ k ≤ |S |) of molecular fragments. Each k combination

has a ground truth labeling where atoms in its molecular frag-
ment(s) receive a 1 label, while others are labeled 0. We report
the maximum Attribution AUC found.

Zinc+2 Test Set. We also report the Model AUC for a “Zinc+2”
holdout set, generated from the Zinc holdout set by iterating
through molecules and adding or removing an atom or bond to
each in nearly every valence-valid way as in ref. 24. This process
is then repeated, resulting in a set of molecules each a molecu-
lar graph edit distance ≤ 2 from the Zinc holdout set, and about
5,000 times larger, for each logic.

Results
Table 1 lists the results obtained for networks trained using data
with synthetic labels that reflect the binding logics listed. The
Zinc Model AUC is near-perfect (1.0) for each of the binding
logics, indicating that the trained models can correctly classify
the molecules in the held-out test sets. Furthermore, the Attri-

bution AUC is significantly lower than 1.0 for several logics. For
instance, for binding logic 9, the GC Attribution AUC is only 0.7,
while the Zinc Model AUC is 0.995. We note that the Attribu-
tion AUC declines as the logics become more complicated and
include larger numbers of functional groups. The MPNN models
exhibit a similar pattern. We now discuss further implications of
these findings.

Attacks Guided by Attributions. The combination of near-perfect
model performance and low Attribution AUCs indicates either:
1) a weakness of the attribution technique or 2) failure of the
model to learn the ground truth binding logics. We distinguish
these cases by investigating individual molecules that were cor-
rectly classified but have low Attribution AUCs. Guided by
patterns across multiple molecules where the attributions were
misplaced with respect to the ground truth binding logic, we
discovered small perturbations of each molecule which caused
the class predicted by the model to be incorrect. By man-
ually inspecting a few perturbations for a few misattributed
molecules, we found at least one perturbation attack for every
logic that did not have a high Attribution AUC, leading us
to conclude that the model did not learn the correct bind-
ing logic. These results clarify that the Zinc held-out sets
are still underrepresentative, despite their careful balancing,
discussed above.

Here, we describe a few of the perturbation attacks that we
found. Binding logic 9 requires the presence of “a primary amine
and an ether and a phenyl.” One example from Zinc that satisfies
this logic is shown in Fig. 3A. This molecule is correctly classified
as positive (i.e., binding) by the model with a probability of 0.97;
however, as seen in the figure, it has misplaced attributions on
several atoms in the ring structures on the left. We perturb those
atoms and separate the primary amine from them with an addi-
tional carbon, resulting in the molecule shown in Fig. 3B. The
model gives this perturbed molecule a predicted score of 0.20, a
negative class prediction, despite the fact that the molecule still
fully satisfies the same binding logic that the model was trained
against.

Binding logic 12 requires that a molecule satisfy the “absence
of an alcohol or presence of a primary amine, along with an
unbranching alkane and a fluoride group.” One example from
Zinc that satisfies this logic is shown in Fig. 3C. It is correctly
classified as positive by the model with a prediction of 0.97;
however, it has misplaced attributions on the carbon atom in
the carbonyl group on the left. Guided by these attributions,
we perturb that carbonyl, converting it to a single bond, result-
ing in the molecule in Fig. 3D. The model gives this perturbed
molecule a predicted score of 0.018, a negative class prediction,
despite the fact that the molecule still satisfies the ground truth
binding logic.

Zinc+2 Holdout Set. To further probe the ability of the model to
generalize, and the role played by dataset bias, we also report
Model AUCs for each logic measured on the “Zinc+2” hold-
out sets described above. These sets are a factor of 5,000 larger
than the Zinc holdout sets, and contain many of the perturba-
tions that led to adversarial attacks. The Zinc+2 Model AUCs
are almost uniformly lower than the Zinc Model AUCs, reflect-
ing the more stringent nature of this test. In some logics (e.g.,
number 13), the Zinc+2 Model AUC is substantially lower,
indicating dataset bias in the Zinc holdout for these models.
In most logics, the Zinc+2 Model AUC is slightly lower, and
we interpret this as evidence for some degree of bias in the
Zinc datasets. We conclude that, even when adversarial exam-
ples are rare, finding them is easy by following misattributions.
Furthermore, if only the Model AUC on the Zinc holdout set is
considered—as in common practice—the MPNN and GC mod-
els perform similarly on 15 of the 16 datasets. However, our
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Fig. 3. Visualizations of attribution scores, calculated using Integrated Gra-
dients. (A) Attribution scores for a molecule from the logic 9 held-out
set that obeys the binding logic. (B) A minor perturbation of the above
molecule, guided by errors in the attributions shown in A, which gets mis-
classified by the model. (C) Attribution scores for a molecule from the logic
12 held-out set that obeys the binding logic. (D) A minor perturbation of the
above molecule which still obeys the logic, but is misclassified by the model.
Dotted boxes are added around the fragments whose presence defines the
molecules as members of the positive class.

Zinc+2 sets reveal that they do not generalize with the same
fidelity.

A Pharmacological Hypothesis. These results indicate that the
attribution can be more trustworthy than the model: Even if
the model achieves a high Model AUC, a low Attribution AUC
appears to indicate that there exist molecules that do not satisfy
the binding logic but are predicted to bind by the model. This
occurs because of biases in the underlying dataset learned by the
model.

The same concern applies to real protein binding datasets.
Our results suggest a simple test that can be performed to
test an existing hypothesis about the pharmacophore(s) that
control binding. First, the hypothesis is codified as a “binding
logic,” which is used to create a set of synthetic labels. Next,
these synthetic labels are used to train a neural network and
analyze its attributions and Attribution AUC. A good Attri-
bution AUC, with attribution to the correct functional groups,
suggests that the combination of dataset and trained neural net-
work is able to generalize. However, a poor Attribution AUC
or consistent unexpected attribution artifacts would suggest a
need for model simplification and regularization, and/or dataset
augmentation.

We follow this protocol using data for binding to the protein
ADRB2 from the DUD-E dataset (19). One hypothesis for a
pharmacophore is a benzene ring with a two-carbon chain con-
nected to an ionized secondary amine. This results in a dataset
with 934 positives and 14,290 negatives, of which ∼10% are
reserved as a held-out set by ID hash. We trained a graph con-
volution model (see details in SI Appendix), and achieved a
Model AUC on the held-out set of 1.0. However, its Attribution
AUC is extremely low, at only 0.11. Visualizations of the attribu-
tions show the attribution only consistently highlights the NH2+
group. This means that attacks (e.g., Fig. 4) are easily discovered
using this insight.

Discussion
There is growing concern about the nonrobustness of machine
learning models, and much recent research has been devoted
to finding ways to assess and improve model robustness (13–15,
25. A common source of nonrobustness is bias in the training
dataset (13, 25, 27, 30). An approach to identifying such bias
is to examine attributions of the model’s predictions, and deter-
mine whether too much attribution falls on noncausal features or
too little falls on causal features (25); both are undesirable and
indicate bias in the training dataset that the model erroneously
learned.

The central challenge in applying this approach to virtual
screening models is that, a priori, we know neither the internal
logic of the model nor the logic of protein binding. Thus, we have
no reference for assessing the attributions. To resolve this, we
introduce the idea of evaluating hypotheses for binding logics by
setting up a synthetic machine learning task. We use the hypoth-
esized logic to relabel molecules used in the original study, and
train a model to predict these labels. If attributions fail to isolate
the hypothesized logic on this synthetic problem, it signals that
there exist biases in the training dataset that fool the model into

Fig. 4. Visualizations of Integrated Gradients attributions. (Top) An exam-
ple “binder” from the synthetic ADRB2 dataset, correctly predicted as a
positive with prediction 0.999. (Bottom) A minor perturbation of the above
molecule which should be a negative but gets misclassified as still a positive
with prediction 0.995.
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learning the wrong logic. Such bias would also likely affect the
model’s behavior on the original task.

To quantitatively assess attributions, we introduce the Attri-
bution AUC metric, measuring how well the attributions isolate
a given binding logic. It is not a measure of the “correctness” of
the attributions. The mandate for an attribution method is to be
faithful to the model’s behavior, and not the behavior expected
by the human analyst (18). In this work, we take the faithful-
ness of the attributions obtained using Integrated Gradients as
a given. For our synthetic task, we find the attributions to be
very useful in identifying biases in the model’s behavior, and we
were able to successfully translate such biases into perturbation
attacks against the model. These attacks perturb those bonds and
atoms with unexpected attributions, and their success confirms
the faithfulness of the attributions. The attacks expose flaws in
the model’s behavior despite the model having perfect accuracy
on a held-out test set. This reiterates the risk of solely relying on
held-out test sets to assess model behavior.

Finally, we acknowledge that attributions as a tool offer a
very reductive view of the internal logic of the model. They are
analogous to a first-order approximation of a complex nonlinear
function. They fail to capture higher-order effects such as how
various input features interact during the computation of the
model’s prediction. Such interactions between atom and bond
features are certainly at play in virtual screening models. Further
research must be carried out to reveal such feature interactions.

Thoughts for Practitioners. The recent machine learning revolu-
tion has led to great excitement regarding the use of neural
networks in chemistry. Given a large dataset of molecules and
quantitative measurements of their properties, a neural net-
work can learn/regress the relationship between features of the
molecules and their measured properties. The resulting model
can have the power to predict properties of molecules in a held-
out test set, and, indeed, can be used to find other molecules with
these properties. Despite this promise, an abundance of caution
is warranted: It is dangerous to trust a model whose predictions
one does not understand. A serious issue with neural networks
is that, although a held-out test set may suggest that the model
has learned to predict perfectly, there is no guarantee that the
predictions are made for the right reason. Biases in the training
set can easily cause errors in the model’s logic. The solution to
this conundrum is to take the model seriously: Analyze it, ask it
why it makes the predictions that it does, and avoid relying solely
on aggregate accuracy metrics. The attribution-guided approach
described in this paper for evaluating learning of hypothesized
binding logics may provide a useful starting point.
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